Structural stability of carbon nanotube films: the role of bending buckling.

نویسندگان

  • Alexey N Volkov
  • Leonid V Zhigilei
چکیده

In films, mats, buckypaper, and other materials composed of carbon nanotubes (CNTs), individual CNTs are bound together by van der Waals forces and form entangled networks of bundles. Mesoscopic dynamic simulations reproduce the spontaneous self-assembly of CNTs into continuous networks of bundles and reveal that the bending buckling and the length of CNTs are the two main factors responsible for the stability of the network structures formed by defect-free CNTs. Bending buckling of CNTs reduces the bending energy of interconnections between bundles and stabilizes the interconnections by creating effective barriers for CNT sliding. The length of the nanotubes is affecting the ability of van der Waals forces of intertube interactions to counterbalance the internal straightening forces acting on curved nanotubes present in the continuous networks. The critical length for the formation of stable network structures is found to be ∼120 nm for (10,10) single-walled CNTs. In the simulations where the bending buckling is artificially switched off, the network structures are found to be unstable against disintegration into individual bundles even for micrometer-long CNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures.

Efficient assembly of carbon nanotube (CNT) based cellular solids with appropriate structure is the key to fully realize the potential of individual nanotubes in macroscopic architecture. In this work, the macroscopic CNT sponge consisting of randomly interconnected individual carbon nanotubes was grown by CVD, exhibiting a combination of super-elasticity, high strength to weight ratio, fatigue...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Buckling of Carbon Nanotubes: A State of the Art Review

The nonlinear mechanical response of carbon nanotubes, referred to as their "buckling" behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loa...

متن کامل

Dynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory

This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 10  شماره 

صفحات  -

تاریخ انتشار 2010